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Introduction 

 Memory Effects (ME) are changes in a Power 
Amplifier’s (PA) non-linear characteristics 
resulting from the past history of the input 
signal.                  

Vo = f(Vin, time)

 Standard predistortion linearization depends 
on a stable non-linear response, and is 
particularly degraded by memory effects

 Techniques to reduce PA memory effects will 
be presented
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OUTLINE

 Why minimize memory effects in PA’s ? 

 Discuss different sources of ME and how to 
suppress them

- Frequency ME

- Drain/collector ME

- Gate/base ME

- Device related ME

- Thermal ME

 Summarize and conclude
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BASIC DSP PREDISTORTION (PD) LINEARIZER

 Every input level has a corresponding output level

 Correction (mag & phase) in look up tables (LUT) depends 
on input level

 LUT often adaptively updated for slow changes over time
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BASIC DSP PREDISTORTION LINEARIZER

 Memory Effects cause correction to depend on 
recent past

 If correction depends on additional parameters, 
system can become very complex (huge multi 
dimensional LUTs, limited processing time and 
bandwidth) 

 Feedback is not a solution because amplifier time 
delay limits maximum bandwidth

 Best solution is to minimize ME by PA design 
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FEEDFORWARD LINEARIZATION

Automatically corrects for memory effects, but is 
more complex and less efficient than predistortion
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GAIN VS. INPUT POWER IS 

AFFECTED BY FREQUENCY

PHASE VS. INPUT POWER IS 

AFFECTED BY FREQUENCY

FREQUENCY MEMORY EFFECTS

 Standard predistorter look-up tables have the same  
correction for every frequency

 Real PA non-linearities do change with frequency
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FREQUENCY MEMORY EFFECTS

 No easy circuit solution for wideband signals

 Design PA for as wide a bandwidth as possible

 Avoid frequency selective components

 Achieve low SWR at input and output and maintain it 
low across full band of interest

 Must equalize small signal gain and phase to achieve 
good wideband performance

 Adaptive techniques can correct for frequency 
changes of limited bandwidth signals
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FREQUENCY MEMORY EFFECTS

Proposed architecture for reducing memory effects produced by 
frequency sensitivity
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FREQUENCY MEMORY EFFECTS

Digital linearization across 100 MHz using filters to correct for 
frequency memory effects
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FREQUENCY MEMORY EFFECTS

Digital linearization across 100 MHz 
without memory effects 

correction

Digital linearization across 100 MHz 
with memory effects correction
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DRAIN/COLLECTOR MEMORY EFFECTS

 The major contributor to ME in many PAs is change in 
drain (or collector) voltage due to non-zero bias/power 
supply impedance 

 All PAs must isolate the RF (i.e. microwave) signal 
from the dc power supply  

 The drain isolation circuit must have a low impedance 
at the signal’s baseband (envelope) frequencies, to 
avoid envelope dependent voltage changes at the 
drain

 Even class A PAs will have an envelope dependent 
voltage change, although the problem becomes worse 
as a PA’s bias moves toward class B
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DRAIN/COLLECTOR MEMORY EFFECTS

Change in drain voltage amplitude modulates and phase modulates 
the PA output producing sidebands at the same frequencies as 

intermodulation distortion (IMD) 
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IMD NON-SYMMETRY

Non-symmetrical IMD products can result from the interaction of 

device and drain / gate ripple induced IMD

(simplest test for PA memory effects)
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Overall carrier to interference (C/I) ratio can be higher than expected 

based on the PA transfer characteristics

This effect is the result of IMD cancellation

C/I MEAS VS SIM
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IMD NON-SYMMETRY

Memory effects produce non-even 
cancellation of IMD
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IMD NON-SYMMETRY

Compromise IMD cancellation can be 
achieved, but may not be sufficient
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RF ENVELOPE (GREEN) IS ~ 140º OUT OF PHASE 

WITH DRAIN RIPPLE (YELLOW)

 

IMDs caused by the PA non-linearity subtract from the 

ripple induced IMDs
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DRAIN/COLLECTOR MEMORY EFFECTS

Measurement of the sensitivity of  a GaAs FET PA to drain modulation

Ripple < 2% is required for C/I < 40 db

Drain Modulation C/I Ratio
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DRAIN/COLLECTOR MEMORY EFFECTS

Amplifier linearity can change and often degrades with 
increasing carrier spacing
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DRAIN/COLLECTOR MEMORY EFFECTS

 For wide or even moderate bandwidth signals, the drain ripple is 
not a trivial problem

 Consider a 250 MHz PA with a 25 MHz multi carrier signal
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DRAIN/COLLECTOR MEMORY EFFECTS 

MINIMIZATION

A low impedance network at envelope frequencies across the 
drain and effective power supply decoupling can minimize 

memory effects
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GATE/BASE MEMORY EFFECTS

 Change in gate (or base) voltage can also be a significant 
contributor to memory effects   

 This problem can be more difficult to solve than for the drain / 
collector case, and is quite different for BJT and FET devices 

 PA stability can be a major concern

 Low currents are involved, so good power supply decoupling is 
easier to achieve

 GaAs FET gate supply must achieve good voltage regulation in 
spite of current flowing due to RF rectification by the gate-source 
diode
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GATE MEMORY EFFECTS MINIMIZATION

The value of R* must be carefully chosen to provide a 
compromise between stability and bias-induced

memory effects
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GATE MEMORY EFFECTS

Gate Modulation C/I Ratio
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Measurement of the sensitivity of  a GaAs FET PA to gate modulation

Ripple < 1% is required for C/I < 40 db
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THERMAL MEMORY EFFECTS

 Major source of thermal memory effects is device 
junction temperature changes as a function of 
envelope frequency, particularly below 100 KHz

 Choice of device can minimize temperature memory 
effects. Temperature affects some devices less

 Bias class can also minimize temperature effects. 
Class A is less affected than class B, but has low 
efficiency

 Long term temperature changes (that do not depend 
on the envelope frequency) can also be considered a 
memory effect. Good thermal design or an adaptive 
circuitry can minimize this problem
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DEVICE RELATED MEMORY EFFECTS

 Some devices display changes in non-linear 
characteristics with envelope frequency that cannot be 
explained by bias modulation

 This phenomena appears related to current flow and 
charge trap build up. Some sources have attributed it 
to very small time-constant thermal effects

 Different devices show varying sensitivity. HBT, some 
LDMOS and GaN devices  appear particularly 
sensitive

 No recommended solution except careful device 
selection 
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ADDITIONAL MEMORY EFFECTS 

CANCELLATION METHODS

These methods are covered in the book “Distortion in RF 
Power Amplifiers” by J. Vuolevi and T. Rahkonen
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Summary

 It is difficult to eliminate distortion caused by 
MEs using linearization

 Bias voltage variations (both drain/collector 
and gate/base) are a major cause of MEs

 Thermal change is another important source 
of MEs

 MEs can be minimized by careful electrical 
and mechanical design
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